
Finding Agreed Plans∗

Gerhard Wickler
AIAI, University of Edinburgh
g.wickler@ed.ac.uk

Abstract

The aim of this paper is to describe and solve a new type
of planning problem in which a group of peers need to find
and agree upon a plan that solves a given problem. Classical
planning only addresses the finding of a plan, whereas agent
research defines the concept of commitment which we will
use to define the “agreed” aspect of a plan. The problem will
be solved by introducing a level of indirection.

Introduction
The classical planning problem [Ghallab et al., 2004, section
2.3] has been extended in a number of ways. One of these
extensions is the distributed (multi-agent) planning problem
[Durfee, 1999]. In fact there is more than one problem that
can be described by this term. In this paper, we will add yet
another aspect to the problem by requiring that a plan which
is a solution to the planning problem must be an agreed plan.

Notions of Distributed Planning
While the classical planning problem has a widely agreed
definition, the distributed version can be defined in one of
two fundamentally different ways. Firstly, it can be defined
exactly as the classical planning problem, but the planning
process that generates the solution plans is distributed over a
number of computational resources. This could be to speed
up the plan generation process, or it could be because the
planning knowledge is distributed over the same resources.
Secondly, it can be defined as an extension of the classical
planning problem in which a solution plan must include an
assignment of actions in the plan to agents executing these
actions. This could be to speed up plan execution or because
multiple agents have different capabilities that must be com-
bined. The difference between the two approaches lies in
what is distributed: the plan generation process or the plan
execution.

∗Sponsored by the European Research Office of the US Army
under grant number N62558-06-P-0353. The authors’ organiza-
tions and research sponsors are authorized to reproduce and dis-
tribute reprints and on-line copies for their purposes notwithstand-
ing any copyright annotation hereon. The views and conclusions
contained herein are those of the authors and should not be inter-
preted as necessarily representing the official policies or endorse-
ments, either expressed or implied, of other parties.

The Collaborative Multi-Peer Planning Problem
A third variant would of course be to have both distributed
amongst a group of agents, and this is the version we have
chosen to adopt for this paper: a group of agents has a set
of goals for which they must find a plan and which assigns
actions in the plan to agents for execution. The initial state
and the goals are assumed to be known and the same for all
agents. It is assumed that all agents want to collaborate to
achieve the common goals.

Furthermore, agents may have different capabilities in
which case the assignment of actions must be to agents
that are capable of performing them. Capabilities may be
overlapping, meaning actions can be performed by more
than one agent, thereby making the assignment of actions
to agents a non-trivial task.

Another important issue is authority. While there may be
agents that have authority over other agents and thus can as-
sign actions to those agents, we will not assume that there is
a single agent that has authority over all others. This means
the planning problem cannot be solved by having one agent
plan for all others. Only those agents with authority over
other agents will be allowed to plan for them, and in that
case the problem can be reduced to one in which only the
sub-group of agents that (between them) have authority over
all others need to be considered, where this sub-group is a
group of peers.

The application that motivates this problem is crisis re-
sponse and management. The scenario here is that a number
of agencies want to provide relief after a disaster has struck.
These agencies usually have different (but overlapping) ca-
pabilities and no authority over each other. Truthfulness and
a collaborative attitude are assumed in this scenario.

The Three Cranes Example
The example we will use to illustrate the collaborative multi-
peer planning problem is a variant of the Dock Worker
Robots domain [Ghallab et al., 2004, section 1.7]. Since
we will look at a single location only there are no robots. At
this location are three cranes k1, k2 and k3 and three piles
p1, p2 and p3 on which are three containers c1, c2 and
c3 as shown in figure 1.

The cranes represent the agents in our scenario and we
assume that none has authority over any other, i.e. they are
peers. What distinguishes the cranes are their capabilities.



k2

k3

pallet

pallet pallet

c1

c2

c3

k1

p1

p2

p3

Figure 1: Initial state for the three cranes domain

Containers are of different types and not every crane can
pick up every type of container. In this example, container
c1 is of type t1 (red circle), container c2 is of type t2
(green square), and container c3 is of type t3 (blue trian-
gle). Crane k1 can lift containers of type t1 and t2, crane
k2 can lift containers of type t1 and t3, and crane k3 can
lift containers of type t2 and t3.

Cranes advertise their capabilities to all other agents. For
example, crane k1 could advertise one of its capabilities (in
a PDDL-like syntax) as:

(:activity move-container-t1
:parameters (?c - container ?po ?pd - pile)
:vars (?co ?cd - container)
:precondition (and

(type ?c t1)
(in ?c ?po) (top ?c ?po) (on ?c ?co)
(top ?cd ?pd) (/= ?po ?pd))

:effect (and
(in ?c ?pd) (top ?c ?pd) (on ?c ?cd)
(not (in ?c ?po)) (not (top ?c ?po))
(not (on ?c ?co))
(top ?co ?po) (not (top ?cd ?pd))))

By advertising this capability crane k1 informs the other
agents that this is an activity it can perform. Internally the
advertising agent may break down this activity into sub-
activities to execute it, but the other agents can now treat
the advertised capability as a primitive with which they can
plan. However, since they have no authority over crane k1,
it is not certain that the capability advertiser will perform the
activity as it is not obliged to always perform advertised ca-
pabilities when they are requested. Note that k1 is leaving
out some detail in its capability description, namely that it
must not be holding anything.

Crane k1 will also advertise a second capability that is
identical to the one above except for the first precondition
which will be (type ?c t2). Similarly, the other cranes
will advertise capabilities for the respective container types.

k2

k3

pallet

pallet pallet

c1

c2 c3

k1

p1

p2

p3

Figure 2: Goal state for a problem in the three cranes domain

Now, given the initial state depicted in figure 1 and the six
activities advertised as capabilities by the different agents,
what is missing from a definition of a planning problem is a
goal state. One possible goal state is given in figure 2.

Agreed Plans
Note that it is not difficult to solve this problem as a clas-
sical problem. That is, it is simple enough to find a se-
quence of actions that transforms the initial state into the
goal state. However, for the problem instance above ev-
ery solution must involve more than one crane and since no
crane has authority over any other crane, no crane can come
up with a plan that it can ensure will be executed. Other
agents may refuse the activities assigned to them, or multi-
ple agents may want to execute the same activities that are
required to get to a given goal state.

The heart of the distributed planning problem is there-
fore not the finding of a plan, but the finding of an agreed
plan. Informally, by an agreed plan we mean a classical plan
in which for every action in the plan there is an agent to
which this action is assigned. Furthermore, this agent must
be committed to the actions assigned to it in the plan, that
is, it intends to execute these actions as required by the plan.
Achieving this commitment is usually not considered part
of the planning problem, but for the planning problem with
multiple peers it is vital.

<I-N-C-A> and Task-Centric BDI
In this section we will formally define the concepts that form
the basis for our definition of the collaborative multi-peer
planning problem and, more importantly, what constitutes a
solution to this problem. We will begin with activities that
form the basic ingredients of a plan. Based on this we will
define activity networks as objects in the <I-N-C-A> on-
tology [Tate, 2003]. Activity refinements provide a way of
breaking an activity down into sub-tasks. This will provide a
fairly standard HTN planning framework [Sacerdoti, 1975;
Tate, 1977]. To extend this to the collaborative multi-peer



planning problem and finding agreed plans we need to de-
fine mental states of agents and we shall do so using a BDI
approach [Rao and Georgeff, 1991]. Specifically, we will
define different types of beliefs that agents have about the
world and each other. Finally, we will briefly discuss the
concept of capabilities as this is important for the planning
as well as the mental states of agents.

Activities
Activities can be defined in a number of ways depending
on what needs to be expressed in the planning domain. To
ground our definition of the collaborative multi-peer plan-
ning problem we shall adopt a simple, STRIPS-like activity
model. Other more expressive representations may be used
here, e.g. ADL [Pednault, 1989]. What we mean by an ac-
tivity schema corresponds to a STRIPS operator.

An activity schema consists of three components:

• s: the signature of the activity schema n(v1, . . . , vk)
where

– n is the unique name of the activity schema and
– v1, . . . , vk are variables representing the parameters of

the activity schema;

• C: the set of preconditions of the activity schema which
can be literals in first-order logic or state variable assign-
ments;

• E: the set of effects of the activity schema which can be
literals in first-order logic or state variable assignments.

By an activity we mean a partially instantiated instance
of an activity schema. That is, some of the variables repre-
senting parameters may be replaced by symbols referring to
objects in the domain and there may be more than one in-
stance of the same activity schema in a plan. We can use the
signature plus a unique label to refer to activities.

By an action we mean an activity that is fully instantiated,
i.e. all the parameters are ground.

If o is an activity schema then we use o.s to refer to
the signature of the schema, o.C to refer to the precondi-
tions of the schema, and o.E to refer to the effects of the
schema. This notation disambiguates the meaning of over-
loaded symbols. In general, we will use lower case letters
for components that are objects of some kind whereas upper
case letters are used for components that are sets of things.

For example, the activity of taking a container of type t1
from the top of a pile could be described in as follows:

(:activity take-t1
:parameters (?c - container ?po - pile)
:vars (?co - container)
:precondition (and

(type ?c t1)
(in ?c ?po) (top ?c ?po) (on ?c ?co)
(empty ?agent))

:effect (and
(not (in ?c ?po)) (not (top ?c ?po))
(not (on ?c ?co)) (top ?co ?po)
(holding ?agent ?c)))

Notice that there is an implicit variable ?agent defined
for every activity in a multi-agent planning domain that is
always bound to the agent performing the activity (or being
responsible for its performance).

Activity Networks: <I-N-C-A>

Activities are organized in networks to form plans. We con-
sider such a network to consist of 4 components described
by an <I-N-C-A> object:

• I: the set of issues in the activity network, e.g. flaws or
opportunities;

• N : the set of activities in the network (at all levels of
refinement);

• C: the set of constraints associated with the network, e.g.
ordering, time or resources;

• A: a set of annotations, e.g. rationale.

If p is an <I-N-C-A> activity network we use p.I , p.N ,
p.C, and p.A to refer to the issues, activities, constraints,
and annotations of this plan respectively. A more detailed
and formal description of the <I-N-C-A> framework can be
found in [Wickler et al., 2006].

Activity Refinements

Refinements are used to break down high-level activities that
are part of an <I-N-C-A> activity network into (primitive)
actions in HTN planning. An activity refinement consists of
the following components:

• n: the unique name of the refinement;

• a: the signature of the activity to be refined (also called
the task);

• A: the set of sub-activities that constitute the refinement;

• C: some constraints on activities in A.

If there is no refinement available for a given activity then
we assume that this activity is primitive and there should be
an agent that can execute this activity. If there is a refine-
ment available for a given activity we consider this activity
abstract and it needs to be refined before it becomes exe-
cutable.

For example, we can break down the abstract activity
move-container-t1 described above into (primitive)
sub-activities using the following refinement:

(:refinement take-and-put-t1
:activity (move-container-t1 ?c ?po ?pd)
:vars (?crane - agent)
:sub-activities (

(1 ?crane (take-t1 ?c ?po))
(2 ?crane (put-t1 ?c ?pd)))

:constraints (
(before 1 2)))



Beliefs Desires and Intentions
Activities, activity networks, and activity refinements to-
gether form an HTN-style planning framework that does
not treat agents in any special way. For the collaborative
multi-peer planning problem we need to define the internal
structure of an agent in more detail (see also [Wickler et
al., 2007]) and we shall assume a BDI-like framework here.
That is, the mental state of an agent can be described by a
set of beliefs (B), desires (D), and intentions (I).

Both, desires and intentions, are represented as
<I-N-C-A>-objects, i.e. plans, in our approach. This is sim-
ply to fit in with our HTN planning framework. Desires in-
clude all those activities that an agent would like to perform
at some point in the future. These activities can be abstract
or primitive, and they may or may not executable.

Intentions include activities that an agent is committed to
performing. This commitment may be to another agent or
it may just be internal. Non-primitive activities must be re-
fined by the planner until all intentions are primitive activi-
ties and the agent believes them to be executable (when they
are due to be executed). Intensions need not be immediate,
that is, they are usually scheduled for an execution time in
the future.

Belief Types
To define the collaborative multi-peer planning problem, the
beliefs of an agent must include various types of beliefs
about the activities that can be performed by the different
agents defined in the planning problem. Thus, we shall di-
vide the beliefs into the following components:

• S: the usual knowledge about the world state, which will
mostly be used to verify the preconditions for activities
and refinements are satisfied;

• C: the set of capability descriptions known to the agent,
i.e. a set of pairs (a, o) where a is the agent that has ad-
vertised the capability and o is the signature of an activity
schema that describes the advertised capability;

• R: the set of activity refinements known to the agent;
• P : the set of primitive activities that this agent can exe-

cute (and knows that it can).

For example, in the initial state given above, S would con-
tain all the logical atoms that are true in this state. The ca-
pability descriptions would be the same for all agents and
would consist of six capabilities, two for each crane, e.g. for
crane k1 which can lift containers of type t1 and t2:

(:capability
:agent k1
:activity (move-container-t1 ?c ?po ?pd))

(:capability
:agent k1
:activity (move-container-t2 ?c ?po ?pd))

Depending on the expressiveness of the formalism used
these may be represented as a single capability containing a
disjunction.

The refinements R would be a set of refinements as de-
scribed above. The set of primitive activities are different

for the agents in our example as each agent only needs to
know the activities it itself can execute. For example, crane
k1 would have the following beliefs in P :

(:can-execute
:activity (take-t1 ?c ?po))

(:can-execute
:activity (put-t1 ?c ?pd))

(:can-execute
:activity (take-t2 ?c ?po))

(:can-execute
:activity (put-t2 ?c ?pd))

Capabilities
The notion of capabilities described so far is actually too
simplistic for practical applications, but it is sufficient for
the three-cranes toy problem used here. It is assumed that
capabilities are described using a shared ontology of activity
descriptions. Since an agent associates only the signature
of an activity with another agent in a capability description,
there needs to be a description associated with that signature
that all agents agree on. A hierarchical ontology of activities
would be more useful for this purpose than the simple model
described above.

Also, it is not realistic to assume that an agent will adver-
tise as part of its capability description all the constraints that
it considers preconditions for the application of this capabil-
ity. For example, one precondition that applies to every ca-
pability description is that the agent is not already otherwise
committed. That is, agents that can only perform one action
at a time may in principle be capable of performing an ad-
vertised capability, but they may not be able to perform it at
any requested time. As commitments are expected to change
relatively frequently but advertised capabilities are expected
to remain constant, such scheduling constraints should not
be part of a capability advertisement.

Another practical concern is that agents usually only per-
form their advertised capabilities as part of a larger protocol
which in itself can be seen as a plan. For example, an agent
might expect to be paid for performing its capability and
there may be actions that correspond to that process that the
capability requester needs to perform. For the example used
here we shall assume that all capabilities are independent of
other actions.

Formalizing the Collaborative Multi-Peer
Planning Problem

We can now formalize the collaborative multi-peer planning
problem. In addition to the traditional components of a plan-
ning problem (operators, initial state, and goal) this requires
a set of agents with their mental (BDI) states as described
above. The next step must then be a definition of what con-
stitutes a solution to such a problem. This will define the
semantics of the problem.

The Problem Specification
A collaborative multi-peer planning problem is given by a
pair (A,N) where A describes a set of agents and N is an
initial activity network.



The first component, A = {a1, . . . , an}, consists of a set
of agent descriptions where each agent ai is defined by its
beliefs ai.B, its desires ai.D, and its intentions ai.I as de-
scribed above. Note that the beliefs include beliefs about
the world state, the capabilities of the agent itself as well as
other agents, available refinements for breaking down tasks,
and primitive activities the agent can execute. Having re-
finements as part of the agents’ knowledge means they do
not need to be listed explicitly as part of the planning prob-
lem.

The second component N is an <I-N-C-A> activity net-
work consisting of issues N.I , activities (nodes) N.N , con-
straints N.C, and annotations N.A. In this HTN-style spec-
ification of a planning problem it is not necessary to list the
initial state and the goal separately as they can be defined
in the initial network with two dummy activities init and
goal as is usual in HTN planning.

We shall assume that there are no inconsistencies in the
planning problem and that all agents have complete knowl-
edge of each other’s capabilities. The former implies that
the initial state implicit in N and the agents’ beliefs about
the current world state ai.B.S are equivalent. The latter im-
plies that for all agents ai, aj their beliefs about capabilities
are the same, i.e. ai.B.C = aj .B.C.

Solutions
The above definition of a collaborative multi-peer planning
problem is not significantly different from classical HTN
planning, except that the agents that execute actions are
made explicit. Note that this already creates a different so-
lution space if one assumes that agents can only execute one
action at a time.

The solutions we are looking for must include an impor-
tant additional condition: they must be agreed by all the
agents in the problem. This can be formalized by requir-
ing that every action that is part of the plan and is assigned
to an agent must be an element of that agent’s intentions, i.e.
every agent is committed to executing its share of the plan
as a result of the planning process.

An agreed solution to a collaborative multi-peer planning
problem (A,N) is a pair (N ′, s) where:
• N ′ is a ground, primitive activity network and
• s is an assignment of activities in N ′ to agents in A

such that:
• there exists a decomposition tree Delta from N to N ′

• every action is assigned to an agent, i.e.
∀a ∈ leafs(∆) : s(a) ∈ A

• assignments are to agents capable of performing the ac-
tivities, i.e.
∀a ∈ leafs(∆) : a ∈ s(a).B.P

• agents intend to perform activities assigned to them, i.e.
∀a ∈ leafs(∆) : a ∈ s(a).I
An additional condition that could be included here but

which is not strictly necessary is to include the assignment
of abstract activities in the decomposition tree to agents, and
require assignments to be only to agents that advertise a
matching capability.

An Approach: Auctions
We will now discuss a solution approach to the collaborative
multi-peer planning problem which draws some parallels to
the idea behind auctions as a method for solving the problem
of finding an agreed price.

Auctions and Agreement
One way of viewing an auction is as a process for agreeing
on something. A group of agents want to buy an item one
of them has to sell, and they need to agree who will buy the
item and at what price. To do so, they hold an auction. That
is, they first agree on a process they will execute and that will
result in the agreed price and buyer. Then they execute that
process and have the desired agreement. Thus, instead of
directly seeking the agreement they are after, they first agree
on a process that leads to the agreement, and then following
this process. If every agent agrees on the process, finding
the desired result is no longer difficult.

Finding Agreed Plans
The question then is what such a process could look like.
One possible procedure is based on the idea of each agent
solving the overall problem as if it had authority over the
other agents, then negotiating additional constraints that
may not have been part of the capability descriptions, and
finally voting for the agreed plan:

repeat:
every agent:

solve HTN planning problem
suggest plan that self would agree to

for every plan:
every agent:
add constraints on own activities

until no agents add further constraints
vote for solution plan; adopt it

The agents start by solving the planning problem as a clas-
sical planning problem, treating all capabilities as available
primitive activities. This may seem like a waste of compu-
tational resources but it is unlikely that agents will accept
other agents’ plans without thinking about the way in which
the common goal can be achieved themselves. Furthermore,
HTN problems tend to be solvable without too much effort
for most practical domains for which there is a known set of
standard operating procedures.

In the next step agents can suggest the solutions they
would like to see implemented to the other agents, e.g. using
a blackboard architecture. For example, eager cranes might
want to suggest plans in which they do as much work as pos-
sible. There is no requirement for every agent to suggest a
plan; they may just rely on others, e.g. if there is a peer they
fully trust. In the worst case there could be no suggested
plans and this simply reflects the fact that there might not
be any solution plans to the classical problem, just like there
might not be an agreeable price for an auction.

Once the plans have been suggested, agents can criticize
each others plans. This can be done by adding further con-
straints to the activities in the plan. For example, an agent



may be assigned an activity that conforms with its adver-
tised capabilities as part of some other agent’s plan, but it
may not be able to perform the capability at that time or in
the specific circumstances. Adding such a constraint at this
stage will invalidate the plan and the agent who suggested
the plan may then re-plan in the next iteration of the loop.

This is continued until no agent adds further constraints to
any of the plans, in which case the set of candidate plans is
hopefully not empty. Note that each of these plans represents
a valid classical solution. Now the agents need to choose
one of these solutions and this can be achieved by voting. If
this procedure was agreed the selected plan should now be
adopted by all agents and thus, the collaborative multi-peer
planning problem is solved.

Conclusions
The main contribution of this paper lies in the definition
of a new kind of distributed, multi-agent planning prob-
lem, the collaborative multi-peer planning problem. In this
problem a group of peers (agents without authority over
each other) have to agree on a plan that achieves a com-
mon goal. Agents are defined with BDI-style mental states,
and a plan is considered agreed if the actions in the plan are
assigned to agents that are committed to executing these ac-
tions. This commitment is an important aspect that needs
to be part of the outcome of the planning process. The
proposed approach introduces a level of indirection into the
planning process—instead of agreeing the plan directly the
peers agree on the procedure for finding the plan and then
execute this procedure.

The proposed approach uses planning techniques to gen-
erate candidate solutions and a combination of negotiation
and voting for achieving agreement. A simple combination
of planning and voting is not considered to be a solution (at
least in our emergency response scenario) as the negotia-
tion aspect effectively gives agents the option of vetoing any
plan that involves them. Note that, for the multi-peer plan-
ning problem, there may exist a plan that solves the plan-
ning problem, but there may not be a plan that all the agents
can agree on. However, if the negotiation phase results in a
non-empty set of plans, this means that all agents involved
have no further objections against any of those plans, and
the voting is only intended as a means for choosing one of
the agreeable plans.

There are some remaining issues concerning the negoti-
ation phase, however. The current solution allows only for
a limited set of criticisms that can be expressed, but agents
may want to object to proposed solutions on more general
grounds, e.g. an “unfair” distribution of work. Part of the
problem here seems to be that the subject of negotiation
changes from the a plan to an optimization criterion or a
preference. Similarly, if there is no agreed plan, the nego-
tiation could be about which goals to change or drop. The
solution presented here does not account for such negotia-
tions.

Future work will look at how decommitment can be in-
corporated into the solution. The idea here that it will be
easier to agree on a plan if agents can specify conditions un-
der which they are allowed to drop a commitment.

References
James Allen, James Hendler, and Austin Tate, editors.
Readings in Planning. Morgan Kaufman, 1990.
Edmund H. Durfee. Distributed problem solving and plan-
ning. In Gerhard Weiss, editor, Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligence,
chapter 3, pages 121–164. The MIT Press, 1999.
Malik Ghallab, Dana Nau, and Paolo Traverso. Automated
Planning. Morgan Kaufmann, 2004.
Edwin Pednault. ADL: Exploring the middle ground be-
tween STRIPS and the situation calculus. In Proc. 1st
International Conference on Knowledge Representation
and Reasoning (KR), pages 324–332. Morgan Kaufmann,
1989.
Anand Rao and Michael Georgeff. Modeling rational
agents within a BDI-architecture. In Proc. 2nd Interna-
tional Conference on Knowledge Representation and Rea-
soning (KR), pages 473–484. Morgan Kaufmann, 1991.
Earl D. Sacerdoti. The nonlinear nature of plans. In
Proc. 4th International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 206–214. Morgan Kaufmann, 1975.
Reprinted in [Allen et al., 1990, pages 162–170].
Austin Tate. Generating project networks. In Proc. 5th In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), pages 888–893. Morgan Kaufmann, 1977. Reprinted
in [Allen et al., 1990, pages 291–296].
Austin Tate. <I-N-C-A>: A shared model for mixed-
initiative synthesis tasks. In Gheorghe Tecuci, editor, Proc.
IJCAI Workshop on Mixed-Initiative Intelligent Systems,
pages 125–130, 2003.
Gerhard Wickler, Stephen Potter, and Austin Tate. Record-
ing rationale in <I-N-C-A> for plan analysis. In Lee
McCluskey, Karen Myers, and Biplav Srivastava, editors,
Proc. ICAPS Workshop on Plan Analysis and Management,
pages 5–11, 2006.
Gerhard Wickler, Stephen Potter, Austin Tate, Michal
Pĕchouc̆ek, and Eduard Semsch. Planning and choosing:
Augmenting HTN-based agents with mental attitudes. In
Proc. International Conference on Intelligent Agent Tech-
nology, 2007.


