
Multi-Agent Planning with Decommitment∗

Gerhard Wickler
AIAI, University of Edinburgh

Edinburgh, Scotland

Antonin Komenda
Agent Technology Center,

Czech Technical University in Prague

Michal Pechoucek
Agent Technology Center,

Czech Technical University in Prague

Austin Tate
AIAI, University of Edinburgh

Edinburgh, Scotland

Jiri Vokrinek
Agent Technology Center,

Czech Technical University in Prague

December 19, 2008

Abstract

One of the problems that must be solved dur-
ing coalition operations is the planning problem:
finding a course of actions for the operation.
Knowledge-based planning is a technique that can
be used to address this problem. However, tra-
ditional planning has focussed on the finding of a
plan that achieves a given goal or accomplishes a
given task. During a coalition operation such a plan
may need to be agreed between the different par-
ties involved in the coalition. In this paper we shall
describe an approach that can be used for finding
an agreed plan. This plan will include a set of de-
commitment rules allowing participants to specify
conditions under which they are allowed to deviate
from the agreed course of action. The proposed al-
gorithm can be used as the basis for an automated
planner, but it should also be usable in a mixed-
initiative setting.

∗Sponsored by the European Research Office of the US
Army under grant number W911NF-08-1-0041. The au-
thors’ organizations and research sponsors are authorized to
reproduce and distribute reprints and on-line copies for their
purposes notwithstanding any copyright annotation hereon.
The views and conclusions contained herein are those of the
authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed
or implied, of other parties.

1 Introduction

The classical planning problem [Ghallab et al.,
2004, section 2.3] has been extended in a number
of ways. One of these extensions is the distributed
(multi-agent) planning problem [Durfee, 1999]. In
fact there is more than one problem that can be
described by this term. In this paper, we will add
yet another aspect to the problem by requiring that
a plan which is a solution to the planning problem
must be an agreed plan [Wickler, 2008].

The application that motivates this problem is
crisis response and management. The scenario here
is that a number of agencies want to provide relief
after a disaster has struck. These agencies usually
have different (but overlapping) capabilities and no
authority over each other. Truthfulness and a col-
laborative attitude are assumed in this scenario.

1.1 The Collaborative Multi-Peer
Planning Problem

The distributed planning problem here is dis-
tributed in the sense that both, the agents creating
the plan and the agents executing the plan are dis-
tributed. More specifically, we consider a group of
agents that has a set of goals for which they must
find a plan and which assigns actions in the plan
to agents for execution. The initial state and the

1



goals are assumed to be known and the same for
all agents. It is assumed that all agents want to
collaborate to achieve the common goals.

Furthermore, agents may have different capabil-
ities in which case the assignment of actions must
be to agents that are capable of performing them.
Capabilities may be overlapping, meaning actions
can be performed by more than one agent, thereby
making the assignment of actions to agents a non-
trivial task.

Another important issue is authority. While
there may be agents that have authority over other
agents and thus can assign actions to those agents,
we will not assume that there is a single agent that
has authority over all others. This means the plan-
ning problem cannot be solved by having one agent
plan for all others. Only those agents with author-
ity over other agents will be allowed to plan for
them, and in that case the problem can be reduced
to one in which only the sub-group of agents that
(between them) have authority over all others need
to be considered, where this sub-group is a group
of peers.

1.2 Agreed Plans

Note that it is not difficult to solve the above prob-
lem as a classical planning problem. That is, it is
simple enough to find a sequence of actions that
transforms the initial state into a goal state. How-
ever, for the problem instances we envisage every
solution must involve more than one agent and
since no agent has authority over any other, no
agent can come up with a plan that it can ensure
will be executed. Peers may refuse the activities
assigned to them, or multiple agents may want to
execute the same activities that are required to get
to a given goal state.

The heart of the distributed planning problem is
therefore not the finding of a plan, but the finding
of an agreed plan. Informally, by an agreed plan
we mean a classical plan in which for every action
in the plan there is an agent to which this action is
assigned. Furthermore, this agent must commit to
the actions assigned to it in the plan, that is, the
agent intends to execute these actions and takes on
an obligation to its peers to execute them. Achiev-
ing this commitment is usually not considered part
of the classical planning problem, but for the plan-
ning problem with multiple peers it is vital.

Figure 1: The Scenario Island (Pacifica)

1.3 The Example Scenario

The approach presented in this paper is being ver-
ified in a simulated environment with reasonably
realistic features. Figure 1 shows a basic map of
this environment, an island inspired by the Paci-
fica suite of scenarios1. On the island, there are
cities and a network of roads connecting them, but
off-road movement is also enabled. There are also
several seaports and airports. The actors are of
several unit types (ground, armored, aerial or sea
units), and may be civilians or non-friendly units.
The latter do not play a role in the kind of scenario
we envisage here, but have been used in other re-
search that uses the same environment.

The general scenario is located on this island
with a potentially non-friendly environment and
limited information visibility and sharing. Due to
this, the environment provides non-deterministic
behavior from the single agent point of view. In
the specific scenario we are interested in here, there
are heterogenous independent self-interested agents
that adopt the shared/joint goals. To fulfill the de-
sired strategic goals in this environment, the agents
provide complex capabilities on several levels of
planning and control.

Strategic plan generation is provided by a set
of commander agents that are responsible for each
type of field unit (ground, aerial, sea and armored)
over which they have authority. The number and

1http://www.aiai.ed.ac.uk/oplan/pacifica

2



specialization of commanders reflects the desired
scenario setting. The field units are dedicated to a
particular commander and receive their tasks from
this commander. The hierarchical structure of tac-
tical planners then creates tactical plans for each
field unit (tactical planners are part of each unit’s
tactical layer). Tactical plans are confronted with
the multi-agent simulation developed for the envi-
ronment and adapted to the actual feedback pro-
vided by the simulator in real-time. Execution of
the plan by the individual unit is simulated and in-
tegrated with the environment feedback from the
simulation engine.

There are a number of heterogeneous agent types
operating in the scenarios, e.g.:

• Commanders: abstract units (not geograph-
ically situated) that represent Ground, Ar-
mored, Aerial and Sea headquarters.

• Stationary units: such units include:

– Cities which provide assembly points for
civilians;

– Supply depots and Petrol pumps which
provide resources of various types;

– Airfields which are landing and refueling
zones for aerial units; and

– Seaports which are docking and refueling
zones for sea units.

• Mobile units: agents with the ability to move
on the island, including:

– Transporters: ground units, which are
can provide transportation of other
unit(s), material or civilians;

– Construction units: can repair damages
or assemble/disassemble stationary units;

– Medical units: provides medical care for
other units or some rescue operations;

– Armored units: for the protection of
other units or to secure an area or con-
voy;

– Aerial units: UAVs with an extended vis-
ibility range; and

– Sea units: for transportation over water.

2 <I-N-C-A> and Task-
Centric BDI

In this section we will formally define the concepts
that form the basis for our definition of the col-
laborative multi-peer planning problem and, more
importantly, what constitutes a solution to this
problem. We will begin with activities that form
the basic ingredients of a plan. Based on this
we will define activity networks as objects in the
<I-N-C-A> ontology [Tate, 2003]. Activity refine-
ments provide a way of breaking an activity down
into sub-tasks. This will provide a fairly stan-
dard HTN planning framework [Sacerdoti, 1975;
Tate, 1977]. To extend this to the collaborative
multi-peer planning problem and finding agreed
plans we need to define mental states of agents
and we shall do so using a BDI approach [Rao and
Georgeff, 1991]. Specifically, we will define different
types of beliefs that agents have about the world
and each other. Finally, we will briefly discuss the
concept of capabilities as this is important for the
planning as well as the mental states of agents.

2.1 Activities

Activities can be defined in a number of ways de-
pending on what needs to be expressed in the plan-
ning domain. To ground our definition of the col-
laborative multi-peer planning problem we shall
adopt a simple, strips-like activity model. Other
more expressive representations may be used here,
e.g. adl [Pednault, 1989]. What we mean by an
activity schema corresponds to a strips operator.

An activity schema consists of three components:

• s: the signature of the activity schema
n(v1, . . . , vk) where

– n is the unique name of the activity
schema and

– v1, . . . , vk are variables representing the
parameters of the activity schema;

• C: the set of preconditions of the activity
schema which can be literals in first-order logic
or state variable assignments;

• E: the set of effects of the activity schema
which can be literals in first-order logic or state
variable assignments.

3



By an activity we mean a partially instantiated
activity schema. That is, some of the variables rep-
resenting parameters may be replaced by symbols
referring to objects in the domain and there may be
more than one instance of the same activity schema
in a plan. We can use the signature plus a unique
label to refer to activities.

By an action we mean an activity that is fully
instantiated, i.e. all the parameters are ground.

If o is an activity schema then we use o.s to refer
to the signature of the schema, o.C to refer to the
preconditions of the schema, and o.E to refer to the
effects of the schema. This notation disambiguates
the meaning of overloaded symbols. In general, we
will use lower case letters for components that are
objects of some kind whereas upper case letters are
used for components that are sets of things.

For example, in the scenario described above, a
simple activity schema could represent the trans-
porting of some item from one location to another
as follows:

(:activity-schema
:signature (transport ?item ?loc1 ?loc2)
:preconditions (at ?item ?loc1)
:effects (at ?item ?loc2) ¬(at ?item ?loc1))

An action (e.g. in a plan) would then fully
specify the parameters, e.g. (transport food12
city34 depot56). Preconditions and effects are
inherited from the activity schema with the given
action name.

2.2 Activity Networks: <I-N-C-A>

Activities are organized in networks to form plans.
We consider such a network to consist of 4 compo-
nents described by an <I-N-C-A> object:

• I: the set of issues in the activity network, e.g.
flaws or opportunities;

• N : the set of activities in the network (at all
levels of refinement);

• C: the set of constraints associated with the
network, e.g. ordering, time or resources;

• A: a set of annotations, e.g. rationale.

If p is an <I-N-C-A> activity network we use p.I,
p.N , p.C, and p.A to refer to the issues, activities,

constraints, and annotations of this plan respec-
tively. A more detailed and formal description of
the <I-N-C-A> framework can be found in [Wickler
et al., 2006].

2.3 Activity Refinements

Refinements are used to break down high-level ac-
tivities that are part of an <I-N-C-A> activity net-
work into (primitive) actions in HTN planning. An
activity refinement consists of the following compo-
nents:

• n: the unique name of the refinement;

• a: the signature of the activity to be refined
(also called the task);

• A: the set of sub-activities that constitute the
refinement;

• C: some constraints on activities in A.

If there is no refinement available for a given ac-
tivity then we assume that this activity is primi-
tive and there should be an agent that can execute
this activity. If there is a refinement available for a
given activity we consider this activity abstract and
it needs to be refined before it becomes executable.

For example, in the scenario described above, the
following simple refinement could be used to specify
how to accomplish the task of moving an item from
one location to another:

(:refinement move-by-truck
:signature (transport ?item ?loc1 ?loc2)
:activities (

1 (load ?item ?truck)
2 (drive ?truck ?loc1 ?loc2)
3 (unload ?item ?truck))

:constraints
(at ?truck ?loc1)
(ordering 1 2 3))

2.4 Beliefs Desires and Intentions

Activities, activity networks, and activity refine-
ments together form an HTN-style planning frame-
work that does not treat agents in any special way.
For the collaborative multi-peer planning problem
we need to define the internal structure of an agent
in more detail (see also [Wickler et al., 2007]) and

4



we shall assume a BDI-like framework here. That
is, the mental state of an agent can be described by
a set of beliefs (B), desires (D), and intentions (I).

Both, desires and intentions, are represented
as <I-N-C-A>-objects, which are plans in our ap-
proach. This is simply to fit in with our HTN plan-
ning framework. Desires include all those activities
that an agent would like to perform at some point
in the future. These activities can be abstract or
primitive, and they may or may not executable.

Intentions include activities that an agent has
scheduled for execution. Non-primitive activities
must be refined by the planner until all intentions
are primitive activities and the agent believes them
to be executable (when they are due to be exe-
cuted). Intentions need not be immediate, that is,
they are usually scheduled for an execution time in
the future.

An agent may also be committed to performing
some of its intentions which are activities in our
task-centric view. Thus, in addition to the usual
mental attitudes defined in BDI, an agent has a set
of commitments C where each commitment consists
of the following components:

• a ∈ I.N : the activity the agent has pledged to
perform;

• p: the precondition under which the agent has
pledged to undertake a;

• A: the set of agents to which the pledge was
made; and

• Λ: a set of decommitment rules, where each
λ ∈ Λ consists of:

– ρ the precondition under which the agent
is allowed to drop the intention a;

– ψ the alternative plan that the agent will
adopt instead of a.

The commitment precondition p reflects the pre-
conditions a.C for the applicability of a as an ac-
tivity (as defined above). Should an agent believe
in a decommitment precondition ρ of one of the de-
commitment rules, it can drop the activity a from
its current set of intentions and adopt the postcon-
dition ψ of the selected decommitment rule.

2.5 Belief Types

To define the collaborative multi-peer planning
problem, the beliefs of an agent must include var-
ious types of beliefs about the activities that can
be performed by the different agents defined in the
planning problem. Thus, we shall divide the beliefs
into the following components:

• S: the usual knowledge about the world state,
which will mostly be used to verify the precon-
ditions for activities and refinements are satis-
fied;

• C: the set of capability descriptions known to
the agent, i.e. a set of pairs (a, o) where a
is the agent that has advertised the capability
and o is the signature of an activity schema
that describes the advertised capability;

• R: the set of activity refinements known to the
agent;

• P : the set of primitive activities that this
agent can execute (and knows that it can).

For example, the commander in charge of sea
units could advertise the capability to transport
items from one location to another. Additional con-
straints may be given with a capability advertise-
ments, such as the fact that the two locations in
question must both be sea ports.

The refinements R would be a set of refinements
as described above. The set of primitive activities
are different for the agents in our example as each
agent only needs to know the activities it itself can
execute.

For example, a truck agent knows that it can
drive from one location to another if there exists a
road that connects the two locations. It may still
require some form of planning to work out more
detail, but the agent must know that it can always
execute this action if the preconditions are satisfied.

2.6 Capabilities

The notion of capabilities described so far is ac-
tually too simplistic for practical applications. It
is assumed that capabilities are described using
a shared ontology of activity descriptions. Since
an agent associates only the signature of an activ-
ity with another agent in a capability description,

5



there needs to be a description associated with that
signature that all agents agree on. A hierarchical
ontology of activities would be more useful for this
purpose than the simple model described above.

Also, it is not realistic to assume that an agent
will advertise as part of its capability description
all the constraints that it considers preconditions
for the application of this capability. For example,
one precondition that applies to every capability
description is that the agent is not already oth-
erwise committed. That is, agents that can only
perform one action at a time may in principle be
capable of performing an advertised capability, but
they may not be able to perform it at any requested
time. As intentions and commitments are expected
to change relatively frequently but advertised ca-
pabilities are expected to remain constant, such
scheduling constraints should not be part of a ca-
pability advertisement.

Another practical concern is that agents usually
only perform their advertised capabilities as part
of a larger protocol which in itself can be seen as
a plan. For example, an agent might expect to be
paid for performing its capability and there may
be actions that correspond to that process that the
capability requester needs to perform.

3 Formalizing the Collabora-
tive Multi-Peer Planning
Problem

We can now formalize the collaborative multi-peer
planning problem. In addition to the traditional
components of a planning problem (operators, ini-
tial state, and goal) this requires a set of agents
with their mental (BDI) states as described above.
The next step must then be a definition of what
constitutes a solution to such a problem. This will
define the semantics of the problem.

3.1 The Problem Specification

A collaborative multi-peer planning problem is
given by a pair (A,N) where A describes a set of
agents and N is an initial activity network.

The first component, A = {a1, . . . , an}, consists
of a set of agent descriptions where each agent ai

is defined by its beliefs ai.B, its desires ai.D, its in-

tentions ai.I and its commitments ai.C as described
above. Note that the beliefs include beliefs about
the world state, the capabilities of the agent itself
as well as other agents, available refinements for
breaking down tasks, and primitive activities the
agent can execute. Having refinements as part of
the agents’ knowledge means they do not need to
be listed explicitly as part of the planning problem.

The second component N is an <I-N-C-A> ac-
tivity network consisting of issues N.I, activities
(nodes) N.N , constraints N.C, and annotations
N.A. In this HTN-style specification of a planning
problem it is not necessary to list the initial state
and the goal separately as they can be defined in
the initial network with two dummy activities init
and goal as is usual in HTN planning.

We shall assume that there are no inconsisten-
cies in the planning problem and that all agents
have complete knowledge of each other’s capabili-
ties. The former implies that the initial state im-
plicit in N and the agents’ beliefs about the cur-
rent world state ai.B.S are equivalent. The latter
implies that for all agents ai, aj their beliefs about
capabilities are the same, i.e. ai.B.C = aj .B.C.

3.2 Solutions

The above definition of a collaborative multi-peer
planning problem is not significantly different from
classical HTN planning, except that the agents that
execute actions are made explicit. Note that this
already creates a different solution space if one as-
sumes that agents can only execute one action at a
time.

The solutions we are looking for must include
an important additional condition: they must be
agreed by all the agents in the problem. This can
be formalized by requiring that every action that is
part of the plan and is assigned to an agent must
be an element of that agent’s intentions, i.e. every
agent is committed to executing its share of the
plan as a result of the planning process.

An agreed solution to a collaborative multi-peer
planning problem (A,N) is a pair (N ′, s) where:

• N ′ is a ground, primitive activity network and

• s is an assignment of activities in N ′ to agents
in A

such that:

6



• there exists a decomposition tree ∆ from N to
N ′

• every action is assigned to an agent, i.e.
∀a ∈ leafs(∆) : s(a) ∈ A

• assignments are to agents capable of perform-
ing the activities, i.e.
∀a ∈ leafs(∆) : a ∈ s(a).B.C

• agents are committed to performing activities
assigned to them, i.e.
∀a ∈ leafs(∆) : a ∈ s(a).I∧
∃c ∈ s(a).C : c.a = a ∧ c.p = a.C ∧ c.A = A

In order to make possible the execution of a col-
lection of distributed plans that constitute the so-
lution to a multi-peer planning problem we need to
make the participating agents not only agree with
execution of the respective plans but to commit to
their execution. Unlike agreement, a mere expres-
sion of conformity with the proposed plans, the
commitment is a richer knowledge structure rep-
resenting agents attitude to the agreed piece of ex-
ecution. While the intention to perform an action
is somewhat equivalent to agents agreement to per-
form an action, the commitment also specifies un-
der which circumstances the agent can get decom-
mitted from its commitment, thereby opening up a
genuinely larger solution space for the collaborative
multi-peer planning problem.

4 An Approach

We will now discuss a solution approach to the
collaborative multi-peer planning problem which
draws some parallels to the idea behind auctions
as a method for solving the problem of finding an
agreed price.

4.1 Auctions and Agreement

One way of viewing an auction is as a process for
agreeing on something. A group of agents want to
buy an item one of them has to sell, and they need
to agree who will buy the item and at what price.
To do so, they hold an auction. That is, they first
agree on a process they will follow and that will
result in the agreed price and buyer. Then they

execute that process and have the desired agree-
ment at which point the buyer and seller are com-
mitted. Thus, instead of directly seeking the agree-
ment they are after, they first agree on a process
that leads to the agreement, and then following this
process leads to commitments.

4.2 Finding Agreed Plans

The question then is what such a process could look
like in the case of the collaborative multi-peer plan-
ning problem. One possible procedure is based on
the idea of each agent solving the overall problem
as if it had authority over the other agents, then ne-
gotiating additional constraints that may not have
been part of the capability descriptions, and finally
voting for the agreed plan if necessary:

repeat
every agent:

solve HTN planning problem
suggest plan that self would agree to

for every plan:
every agent:

add constraints on own activities
add decommitment rules on own activities

every agent:
modify suggested plan with new constraints

until no agents add further constraints
vote for solution plan
every agent:

commit to the agreed plan

The agents start by solving the planning problem
as a classical planning problem, treating all capa-
bilities as available primitive activities. This may
seem like a waste of computational resources but
it is unlikely that agents will accept other agents’
plans without thinking about the way in which the
common goal can be achieved themselves. Fur-
thermore, HTN problems tend to be solvable with-
out too much effort for most practical domains for
which there is a known set of standard operating
procedures. It is assumed here that agents all want
to accomplish the common goal, but every agent
may have different criteria for what they consider
the best solution, which is why they may come up
with different plans at this stage.

In the next step agents can suggest the solutions
they would like to see implemented to the other

7



agents. This can be done by using a shared data-
structure such as a blackboard, or by means of
agents requesting each other to provide solutions
peer-to-peer. There is no requirement for every
agent to suggest a plan; they may just rely on oth-
ers, e.g. if there is a peer they fully trust. In the
worst case there could be no suggested plans and
this simply reflects the fact that there might not be
any solution plans to the classical problem, just like
there might not be an agreeable price for an auc-
tion. Assuming that there are n peers involved in
the planning, there may now exist (up to) n initial
candidate plans representing alternative solutions
at this point in the algorithm.

4.3 Adding Constraints

Once the plans have been suggested, agents can
constructively critique each others candidate plans.
This can be done by adding further constraints to
the activities in the plan. For example, an agent
may be assigned an activity that conforms with its
advertised capabilities as part of some other agent’s
plan, but it may not be able to perform the capa-
bility at that time or in the specific circumstances.
Adding such a constraint at this stage will invali-
date the plan and the agent who suggested the plan
may then modify its candidate solution to take into
account any additional constraints that have been
added. The agent may wait with the modification
until all peers that are assigned actions in the plan
have had an opportunity to add constraints. The
modification of the candidate solution may be a mi-
nor fix or a completely different plan, but it has to
be a valid solution to the planning problem includ-
ing all the new constraints.

4.4 Adding Decommitment

Instead of constraints that invalidate a plan, an
agent may add decommitment rules to activities as-
signed to it in another agent’s candidate solution.
These rules do not invalidate the plan but specify
how it might be changed at execution time, given
certain conditions. Just like the activities in the
plan, these decommitment rules need to be agreed
by all peers.

There is a number of different decommitment
rule types suggested for adoption:

• Full decommitment: The basic decommit-
ment strategy is dropping the commitment
without any further task to be accomplished.
Under defined circumstances the agent is com-
pletely released from the commitment.

• Delegation: By using this type of the decom-
mitment rule the agent shall be able to find
some other agent who will be able to complete
its commitment on the original agent’s behalf.
It is possible that such a commitment will con-
tain unbound variables representing the need
to search for an agent suitable for delegation.
The basic idea is to find an agent that is
able to undertake the commitment under cir-
cumstances when the decommitment condition
(which is true in case of the original agent) be-
came false, so the new agent is able to fulfill
the commitment. The delegated commitment
can contain a new set of decommitment rules.

• Relaxation: Relaxation is a special decom-
mitment, where the original commitment is re-
placed with a new commitment with relaxed
properties of the task. Such decommitment
rule is often used when the agent needs to spec-
ulate about its potential inability to provide re-
quest quality of service, delivery time or costs.
It has been shown that planning with relax-
ation decommitments rules can contribute to
an increased efficiency of coordinated actions
in dynamic environments [?].

Since decommitment rules do not invalidate the
suggested plan, there is no need for the suggesting
agent to modify its candidate in response to a de-
commitment rule being added. However, the sug-
gester may still decide to do so if it believes another
plan to be now preferable.

4.5 Voting

This process is continued until no agent adds fur-
ther constraints or decommitment rules to any of
the plans, in which case the set of candidate plans
is hopefully not empty. Note that each of these
plans represents a valid classical solution. Now the
agents need to choose one of these solutions and
this can be achieved by voting, provided that each
agent is able to construct a preference ordering of
the plans. This preference ordering would be linked

8



with utility functions representing cost and/or ben-
efits that each plan represents for the respective
agent. Note that at this stage all the plans avail-
able for voting are plans the participating agents
are happy to adopt and thus the voting is simply a
means for selecting one of the plans. Various voting
protocols (e.g. plurality protocol, binary protocol,
Borda protocol) can be adopted here.

If the voting process terminates successfully, the
selected plan is an abstract solution to the multi-
agent planning problem. As the voting process
selects the plan from the constrained candidate
plans, each annotated with particular decommit-
ment rules, all involved agents commit to the se-
lected plan.

5 Conclusions

This paper defines a new kind of distributed, multi-
agent planning problem, the collaborative multi-
peer planning problem. In this problem a group
of peers (agents without authority over each other)
have to agree on a plan that achieves a common
goal. Agents are defined with BDI-style mental
states, and a plan is considered agreed if the actions
in the plan are assigned to agents that are commit-
ted to executing these actions. This commitment
is an important aspect that needs to be part of the
outcome of the planning process. The proposed
approach introduces a level of indirection into the
planning process—instead of agreeing the plan di-
rectly the peers agree on the procedure for finding
the plan and then execute this procedure. The re-
sulting plan may include decommitment rules for
certain activities in the plan, giving agents that
participate in the execution a certain degree of flex-
ibility.

This approach is particularly relevant for coali-
tion operations in which participants in the coali-
tion are peers and the lack of authority over each
other adds a new source of problems to the plan-
ning process.

The proposed planning algorithm is very effi-
cient, but it is not aimed at fining an optimal so-
lution plan. Agents get committed to pre-selected
plan that is presumably optimal (to some degree)
according to the suggesting agent’s criteria, but
more importantly, it should at least acceptable to
all agents involved. There may be potential for an

improvement of e.g. stability of the plan or longer
term use of resources should the agents have the
opportunity to choose between quality of the pro-
vided solution and various offered decommitment
strategies.

References

[Allen et al., 1990] James Allen, James Hendler,
and Austin Tate, editors. Readings in Planning.
Morgan Kaufman, 1990.

[Durfee, 1999] Edmund H. Durfee. Distributed
problem solving and planning. In Gerhard Weiss,
editor, Multiagent Systems: A Modern Approach
to Distributed Artificial Intelligence, chapter 3,
pages 121–164. The MIT Press, 1999.

[Ghallab et al., 2004] Malik Ghallab, Dana Nau,
and Paolo Traverso. Automated Planning. Mor-
gan Kaufmann, 2004.

[Pednault, 1989] Edwin Pednault. ADL: Exploring
the middle ground between STRIPS and the sit-
uation calculus. In Proc. 1st International Con-
ference on Knowledge Representation and Rea-
soning (KR), pages 324–332. Morgan Kaufmann,
1989.

[Rao and Georgeff, 1991] Anand Rao and Michael
Georgeff. Modeling rational agents within a BDI-
architecture. In Proc. 2nd International Con-
ference on Knowledge Representation and Rea-
soning (KR), pages 473–484. Morgan Kaufmann,
1991.

[Sacerdoti, 1975] Earl D. Sacerdoti. The nonlin-
ear nature of plans. In Proc. 4th International
Joint Conference on Artificial Intelligence (IJ-
CAI), pages 206–214. Morgan Kaufmann, 1975.
Reprinted in [Allen et al., 1990, pages 162–170].

[Tate, 1977] Austin Tate. Generating project net-
works. In Proc. 5th International Joint Con-
ference on Artificial Intelligence (IJCAI), pages
888–893. Morgan Kaufmann, 1977. Reprinted in
[Allen et al., 1990, pages 291–296].

[Tate, 2003] Austin Tate. <I-N-C-A>: A shared
model for mixed-initiative synthesis tasks. In
Gheorghe Tecuci, editor, Proc. IJCAI Workshop

9



on Mixed-Initiative Intelligent Systems, pages
125–130, 2003.

[Wickler et al., 2006] Gerhard Wickler, Stephen
Potter, and Austin Tate. Recording rationale
in <I-N-C-A> for plan analysis. In Lee Mc-
Cluskey, Karen Myers, and Biplav Srivastava,
editors, Proc. ICAPS Workshop on Plan Anal-
ysis and Management, pages 5–11, 2006.

[Wickler et al., 2007] Gerhard Wickler, Stephen
Potter, Austin Tate, Michal Pĕchouc̆ek, and Ed-
uard Semsch. Planning and choosing: Augment-
ing HTN-based agents with mental attitudes.
In Proc. International Conference on Intelligent
Agent Technology, 2007.

[Wickler, 2008] Gerhard Wickler. Finding agreed
plans. In Ruth Aylett and Yvan Petillot, editors,
Proc. 27th Workshop of the UK Planning and
Scheduling Special Interest Group (PLANSIG),
pages 137–142, 2008.

10


